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An extension of the well-known coherent-potential-approximation is developed for the study of
various properties of random arrangements of spherical dielectric scatterers. Someé of the short-
range order is taken into account by considering a coated sphere as the basic scattering unit. A
generalization of the energy-transport velocity is obtained. The validity of our approach is checked
by comparison with experimental results, as well as with numerical calculations. Results for the
long-wavelength effective dielectric constant, phase velocity, energy-transport velocity, mean free
path, and diffusion coefficient are presented and compared with experiments on scattering from
dielectric spheres. In addition, our findings suggest that the positions of the band gaps in periodic
dielectric structures are closely related with the range of localized states in random dielectric media.

L INTRODUCTION

In recent years, there has been growing interest in
studies of the propagation of classical waves in random
media.! While some of the features associated with weak
localization, such as enhanced coherent backscattering,
have been detected in light scattering experiments,' the
localization of electromagnetic waves or other classical
waves in random systems has not been established be-
yond doubt. It is well known'™3 that it is harder to lo-
calize classical waves, mainly due to the fact that at low
frequency the effect of disorder tends to be wiped out
for classical waves due to an w? factor, whereas electrons
at low energy are trapped more effectively, even by a
weak random potential. It has been suggested? that an
intermediate-frequency window (or windows) of localized
states separates the low-frequency extended states char-
acterized by Rayleigh scattering from the high-frequency
extended states described by geometric optics. Theories
based on the weak scattering limit and on the coherent-
potential approximation (CPA) predict frequency inter-
vals within which localization should be observed.l:3™¢
These predictions are based on approximations which are
uncontrollable; in Ref. 3, results based on a reliable nu-
merical technique provide evidence supporting the exis-
tence of spectral regions of localized eigenstates, at least
for scalar classical waves. However, there is no conclu-
sive experimental evidence yet, although experiments by
Genack and collaborators” provide some indications that
light localization is possible. In addition, it was recently
recognized® that considerable care is needed in interpret-
ing low values of the diffusion coefficient in studies for
the search of light localization. In particular, the Am-
sterdam group® presented experimental results for the
diffusion coefficient D and the transport mean free path
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£:. We want to stress that ¢; is the transport mean free
path, which is defined as the length over which momen-
tum transfer becomes uncorrelated. This is different from
the scattering mean free path £ which describes the decay
length of the single-particle Green’s function and is eas-
ily calculated within the CPA. The transport mean free
path involves an extra factor (1 — cos@) in the calcula-
tion of the total cross section. Here we have assumed that
¢ = {;, and some preliminary results tend to confirm that
£ and ¢, are not much different from each other. In any
case, the Amsterdam group’s results demonstrated that
in the strongly scattering random dielectric medium, the
low values of the diffusion coefficient D = vgf;/3 were
caused by extremely small values of the transport veloc-
ity, vg, and not by the small values of £;, which signify
strong localization. It is, therefore, possible that in a ran-
dom medium the transport velocity can be much lower
than the phase velocity, which is approximately equal to
the velocity of light, ¢, divided by an appropriate aver-
age index of refraction. To explain this discrepancy, the
Amsterdam group® presented a treatment of the trans-
port velocity based on the low-density approximation of
the Bethe-Salpeter equation. They argued that their ap-
proach confirmed the observed smallness of the transport
velocity. However, Barabanenkor and Ozrin,® as well as
Kroha et al.,'® also developed a theory based on the low-
density approximation of the Bethe-Salpeter equation,
with a generalized Ward identity for scalar waves. Their
conclusion was that the expression for the transport ve-
locity was renormalized in the same way as the phase
velocity. Thus, the question of the proper transport ve-
locity, especially at high concentration of scatterers, re-
mains open. In the present work we develop a general-
ization of the well-known CPA, which combined with the
Amsterdam group approach produces results in reason-
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able agreement with the experimental observations.

The difficulty in localizing classical waves has led
to suggestions of alternative pathways to localization.
John? has proposed that classical localization may be
more easily achieved for a weakly disordered system of
almost periodically arranged dielectric structures in the
frequency regime near a band gap. We can very reliably
calculate the bands and gaps if the dielectric spheres form
a periodic lattice. It is very plausible that a connection
between the gaps in periodic systems and the ranges of
localized states in a random system exist,'! at least_for
weak disorder and/or for a high concentration of dielec-
tric spheres (approaching the close-packing limit). In-
deed, in this case the regions of localized states (being at
the tails inside the gaps) practically coincide with the po-
sitions of the gaps. It will be very interesting to check if
the theoretical approximate approaches, even on the level
of a generalized CPA, reproduce the above prediction as
we move near the close-packing limit.

In this paper, we present a simple approach that is
based on an extension of the Amsterdam group method
and on a generalization of the well-known CPA, appro-
priate for the case of high dielectric constant identical
spheres placed randomly in a host of low dielectric con-
stant. We take into account the short-range order in-
duced by the spherical shape of the scatterers by con-
sidering a coated sphere as a scattering unit. The host
coating thickness decreases as the concentration of the di-
electric spheres increases. To calculate the macroscopic
properties of the random system, the coated sphere is em-
bedded in an effective medium with an effective dielectric
constant, €.. The quantity e. is self-consistently deter-
mined by demanding that the average forward-scattering
amplitude f(0) is equal to zero. Once the quantity e.
is determined, an effective propagation constant ¢ =
(€e)*/?w/c is defined, where c is the velocity of light, and,
therefore, one can immediately find the mean free path
£=0.5/Im(q), the renormalized wave vector k& = Re(g),
and other effective macroscopic properties of the ran-
dom system. The validity of this approach is verified
by comparison with experimental results, as well as with
numerical calculations. The coated CPA results for the
mean free path, phase velocity, and diffusion coefficient
are in reasonable agreement with experiments. We want
to caution the reader that the phase velocity obtained
from our newly developed coated CPA does not, in gen-
eral, coincide with the energy-transport velocity. Owur
CPA calculates the average Green’s function (G) and not
(GG} which is related with transport properties. How-
ever, there is no reliable transport theory for (GG) in
the high concentration limit, where most of the exper-
iments are done. For lack of any better theories, in
the present paper we have developed a combination of
the coated CPA with the energy-transport theory of La-
gendijk et al.® This new theory reduces to that of La-
gendijk et al.® in low concentration and seems to be con-
sistent with experiment in high concentration. The mo-
bility edge trajectory which is obtained by employing the
potential well analogy'? (PWA) together with the coated
CPA,'? agrees reasonably well with the positions of the
band gaps in the periodic dielectric structures, in spite of
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the fact that the comparison is made for high concentra-
tion where our CPA is less accurate. In addition, differ-
ent definitions of the velocity of light in random media
will be introduced, and compared with experiments. The
energy-transport velocity introduced by the Amsterdam
group,® the effective phase velocity derived by the coated
CPA, the phase velocity derived* from the Green’s func-
tion and the energy velocity based on the combination of
coated CPA and the Amsterdam group method will be
compared with each other and with experiment.

'II. MODEL AND METHODS OF CALCULATIONS

For our studies we consider a composite medium con-
sisting of two lossless materials, with dielectric constants
€3 and e3. Our composite medium is assumed to consist
of spheres with diameter, d = 2R and dielectric constant
€2 randomly placed within the host material with dielec-
tric constant ¢;. We will only consider cases where €;
and €, are real and positive, i.e., cases where there is
no absorption and free propagation exists for each of the
two components. The random medium is characterized
also by f, the volume fraction occupied by the spheres
and, of course, the ratio u = €3/€; of the two dielectric
constants. We take €5 > €; and nonoverlapping spheres
(except in Fig. 1, where we show also results for the case
of €, > €3 and overlapping spheres). It should be em-
phasized that the shape of the scatterers (e.g., sphere vs
cube) may play an important role. The spheres do not
form an infinitely connected channel even for the high
volume fraction f, while a completely random mixture
of cubes (or another flat surface shape) may easily form
an infinitely connected channel. It must be pointed out
that it is the persistence of the dominant role of the single
scatterer even for high f that makes our CPA approach
more reliable.

We consider first the propagation of classical waves in
a random medium described by the wave equation for the
scalar field :

82
v - G =0 (t2)
or
Vi + “’—26(r)¢ =0 (1b)
c? ’

The corresponding equations for the electronic case are

V2 —-2—?V(r)¢ + 2—2”—36—15 =0, (2a)
V2 + %[E ~V(r)]$ =0. (2b)

In the time domain, the electronic [Eq. (2a)] and the
classical wave [Eq. (la)] equations are not equivalent;
as a result, time dependent processes such as the dif-
fusion of an initially localized pulse cannot be carried
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over from the electronic to the classical wave case with-
out further analysis.®10 On the other hand, in the fre-
quency domain the two equations [Egs. (1b) and (2b)] are
equivalent.? Since €(r) is positive definite and w? >0, it
follows immediately that E > Vax for the corresponding
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FIG. 1. The threshold value of the dielectric constant ratio
p=e2/€1 for the opening of the first band gap is plotted as a
function of the filling ratio f of dielectric spheres arranged in
a diamond lattice. The dielectric constant of the spheres is
€2 and the host €; (material case) or vice versa (air case of
overlapping spheres). The (a) case is for scalar waves, while
(b) is for electromagnetic waves.
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electronic problem. This means that the classical wave
problem is mapped onto the electronic problem for an
energy larger than the maximum value of the potential.
The gaps in the classical wave problem are equivalent
to gaps for E > Vax, i-e., in the classically unbounded
regime for the electronic problem. The existence of gaps
in this region of energy for three-dimensional (3D) peri-
odic systems is not a priori guaranteed. As a matter of
fact, only under rather extreme conditions, gaps above
Vinax appear.®1314 In Fig. 1(a), we plot the threshold
value of the dielectric constant ratio p = e3/€; for the
creation of a gap for the diamond lattice, as a function
of the filling ratio f. Notice that for very small values
of f and large values of f, no gap exists for any value
of the dielectric constant ratio. In Fig. 1(b), we plot the
results of the threshold values of u vs f, for the case of
electromagnetic (EM) waves and again for the diamond
lattice. Notice that in the EM wave case, the optimum
f is around 0.40, higher than the f of the classical case
[see Fig. 1(a)] which is 0.15. The corresponding minimum
values of u are very close to 4 for both cases.

The theory of wave propagation in a 3D weakly random
medium is based on the implicit assumption that disor-
der modifies the phase of the unperturbed wave function.
The periodic wave vector kg is renormalized to & and at
the same time gains an imaginary part i/2¢, where £ is
the phase coherence length or scattering mean free path,
ie., ko = k+1i/2L. As long as k€ >1, the effect of disor-
der on the amplitude of the unperturbed wave function is
negligible, thus justifying the traditional approach which
ignores any amplitude fluctuations. However, as the dis-
order becomes stronger, i.e., as kf approaches unity, am-
plitude fluctuations of ever increasing magnitude and ex-
tent, start developing. As we enter the localized region,
the wave still has large amplitude fluctuations but, in
addition, its amplitude decays exponentially on the av-
erage for large distances as exp [—7/}], thus defining the
localization length A. Many versions of an approximate
theory have been developed which express the amplitude
related quantities, with phase-related quantities k& and £.
Probably the most accurate among them is the so-called
potential well analogy (PWA),!2 which connects the self-
consistent theory of localization to the problem of finding
a bound state in a potential well. For example, the ampli-
tude fluctuations of the wave function in the random sys-
tem correspond to the scattering length of the scattering
solution and the localization length corresponds to the
decay length of the bound solution in the potential well.
So the approximate PWA technique requires as inputs
the renormalized wave vector k and the mean free path £.
A very efficient way to obtain both &k and £ is the so-called
coherent-potential approximation (CPA). The CPA in-
troduces a yet undetermined effective medium, charac-
terized by an effective complex frequency-dependent di-
electric constant ¢, or equivalently an effective propaga-
tion constant g, such that

w? 1/2 i
g= (c—zee) =k+i/2¢ 3

the quantity ¢ (or €.) is determined by the condition
that the resulting scattering, when a spherical region
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of the effective medium is replaced by the true random
medium, be equal to zero on the average. To implement
this general idea, we consider the homogeneous effective
medium (dotted region in Fig. 2) as made up of iden-
tical nonoverlapping, space filling Wigner-Seitz cells of
fce structure. The volume of each cell equals V, = 2%V,
where V' = 4wR3/3 is the volume of the sphere of the
high dielectric material presented as a black sphere in
Fig. 2 (R is taken as the unit of length). Within each
cell, we take into account two scattering configurations
as shown in Fig. 2. The first one consists of a black sphere
placed at the center of the cell and is surrounded by a
spherical region of low dielectric material (white region
in Fig. 2). The outer radius is R, and the volume of the
coating is V, — V. This white coating takes into account
approximately the fact that as a result of the spheri-
cal shape of the scatterers there is host material around
each black sphere even at very high volume fractions (i.e.,
for f <0.6). The other configuration simulates the case
where at the center of the cell is the host material sur-
rounded by the neighboring black spheres; for simplicity
the rather irregular shape of this piece of host material
is replaced by a sphere of radius R, and volume V,,. The
probability of each configuration and the radii R, and R,,
depend on f and on z. In previous studies®*!2 we and
other authors have considered as basic scattering units
a black sphere with probability f and a white sphere
of equal radius with probability 1 — f. This previous
choice, which treats the black and white regions equally,
neglects the basic topological and geometrical difference
between the spheres and the host material. In particular

FIG. 2. A typical configuration of the random system. The
solid spheres of radius R =1, are the scattering centers, their
volume fraction is f. There are two types of scattering units,
a coated black sphere of radius Rs > R and a host material
sphere of radius Ry. The dotted region is the effective medium
with a yet undetermined dielectric constant.
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for high f, the white sphere is not only less probable but
its radius is smaller than the radius of the black sphere.
Obviously the coated solid sphere, as well as the white
sphere with a different radius, approximates much better

~ the real random system of dielectric spheres. To calculate

the effective dielectric constant €. or the effective prop-
agation constant g, we require that {f(0)) = 0, where
(£(0)) is the average forward-scattering amplitude. In
particular, for the coated CPA we must satisfy the fol-
lowing condition:

P1f1(0) + p2f2(0) = 0, 4)
where p; and f1(0) are the probability and the forward-
scattering amplitude of the first configuration of a single-
coated sphere embedded in the effective medium with
dielectric constant €.; pz and f2(0) are the correspond-
ing quantities for the white sphere (host material) as the
basic scattering unit. We must determine the quantities
p1,P2, Rs, Ry, and z. Obviously p; V is proportional to f,
p1 (Vs — V) +p,V,, is proportional to 1— f (with the same
proportionality constant), and p; 4+ pa=1. Thus p; =
fV/V, ps = (1 - fV,/V)V/V,, where V = p,V, +p2V A
and B2 = —V“L‘ The volume V, can be taken as equal
to V / (n' + 1), where n' is the average number of black
spheres within the volume V, around the central ome.

- The quantity n' is proportional to f and to the available

volume V, — V, i.e., n’ = af(2® — 1). The proportion-
ality constant, a, can be determined by the requirement
that in the close-packed limit (f = 0.74) and for z = 3,
n' = 12. Such a requirement leads to a value of a less
than unity, which does not guarantee that ps > 0. To
avoid this problem, we chose a = 1; thus, the result-
ing_expression for V, is V, = V23/[f ( —1) +1]. The

“ quantity V,, can be taken equal to V, — n"V,, where n"

the average number of spheres W1th1n the volume Vp, is
proportional to the available volume V,,/V and to the Vol-
ume fraction f with the proportionality constant taken,
as before, equal to one. Thus, V,, = 23(V — fV,). With
the choices we have made, the result depends on the free
parameter z. We fixed the value of z by fitting our results
to the f — 0 case for which exact results are available.
We found that z = 1.65 reproduced very accurately the
exact results for all frequencies we tested. In Fig. 3, we
plot the radius R, of the coated sphere and the radius R,
of the host sphere vs the volume fraction f of the high
dielectric material. Notice that as f —+ 0, R,, as well as

"Ry, approach the value of zR, where R is the radius of

the high dielectric constant sphere, which is taken to be
equal to one. As f approaches the fcc close packing of
74%, we have that R, = 1.078R and R,, = 0.688R, which
are close to the corresponding values R, = 1.086R and
R, =0.414R of the close-packed fcc lattice. This is one

_ 7_requ1rement we had to sa.tlsfy, and the choice of z = 1. 65
< gave a ‘teasonable agreement As we mentioned before in

Eq. (4), f1(0) and f»(0) are the forward-scattering am-
plitude of the coated solid sphere and of the host sphere,
respectively. The forward-scattering amplitude of either
a coated sphere or a host sphere is given by

(0) = 2; Z(Zf +1)(a + by), (5)
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FIG. 3. The dependence of the radius R; and R, on the
filling ratio f.

whereg = 2

© /€ is the wave vector in the effective medium
and ay and by are given in Ref. 15 for both the coated
sphere as well as the single sphere. In addition, the self-

energy X is given (to first order in the concentration)
by

S = —dnnf(0), (6)

where n is the number density (i.e., conceniration) of the
particular type of scatterer. In addition, we also have
that the total scattering cross section o is equal to

o =4rImf(0)/q = —Im¥/q n.. (7)

Before we discuss the solution of the coated CPA [Eq.
(4)], we want to make some comments concerning re-
sults that one can obtain in the low concentration limit.
Usually perturbation theory is inadequate in the region
of strong scattering. The standard way to go beyond
perturbation theory is to treat each scattering center in-
dependently of all the others and then simply add the
effects (complete omission of the multiscattering pro-
cesses). Under this assumption, the scattering mean free
path £ is given by

£ =1/no = —q/Im¥%, (8)

where £ is given in units of the radius R of the scattering
sphere. In addition, the phase velocity is given®® by

vph = ¢y/1 + ReX/q?, (92)
which for small values of ReX/¢? can be written as
- (9b)

Uph = ——————..
PR /1 —Re%/q?

Recently, the Amsterdam group® has suggested that the
correct transport velocity that must enter into the diffu-
sion equation is the energy-transport velocity, vg. The
expression for vy is given by Egs. (28) and (29) in Ref. 8.
The important point made by them is that vg is always
less than the velocity of light, which is not true for either
the phase velocity or the group velocity, especially close
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to the Mie resonances of a finite single scatterer. We will

. later present results for both vy and vg, together with

the effective velocities obtained from the new developed
coated CPA.

III. RESULTS AND DISCUSSION

To solve Eq. (4), i.e., the equation (f(0)) = 0 or equiv-
alently () = 0, we transform it into an iterative equa-
tion of the form g1 = gn + A(Z), where 7 is the order
of iteration and A is chosen using the weak scattering
limit and demanding as good a convergence as possible.
We have used A = —3/8mg,. After a successful conver-
gence of ¢, which implies (f(0)) = 0 or (X} = 0, the
mean free path ¢=0.5/Im(g), the renormalization wave
vector k& =Re(q), the dimensionless localization param-
eter kf, and the effective phase velocity v = w/k are
determined. In the PWA formalism?!? there is a mobil-
ity edge, separating extended states from localized states
when kf ~0.84. As mentioned before, the free param-
eter z in our coated CPA theory was chosen in such a
way that our coated CPA gives the same value of the
mean free path £ as the weak scattering expression given
by Eq. (8) for very low values of f. Indeed, the choice
of z = 1.65 in the coated CPA gave mean free paths in
excellent agreement with the weak scattering expression,
for different values of the incident frequency. In addition,
the choice of z = 1.65 gave excellent agreement (between
the coated CPA results and the band structure results)
for the long-wavelength effective dielectric constant €. for
all values of f. This is clearly shown in Fig. 4 where we
plot the long-wavelength effective dielectric constant vs
the filling ratio f for the band structure results'® of an
fcc lattice of dielectric spheres of dielectric constant of
13 embedded in a medium with the dielectric constant
equal to one. Notice that our coated CPA results (solid
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FIG. 4. The long-wavelength dielectric constant ¢. for a
sphere with dielectric constant € =13 in a host of ;1 =1 as a
function of the sphere filling ratio f. Results of the newly de-
veloped coated CPA are compared with the Maxwell-Garnett
(MG-1), scalar, conventional CPA, and weak scattering re-
sults as well as numerical data based on periodic fcc struc-
tures. MG-2 is the Maxwell-Garnett approach for spheres of
dielectric constant ez = 1 in a host of €3 = 13.
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triangles) agree extremely well with the very accurate fcc
results (solid circles) all the way to f ~0.74, which is the
close-packing concentration. This is impressive, because
the coated CPA is expected to be inaccurate for f >0.64
(the random close-packed limit) and completely inappli-
cable for f >0.74 (the fcc close-packed limit). Our coated
CPA results are in reasonably good agreement with the
Maxwell-Garnett theory which is given by

Ec:h(k1+q+2ﬂ@—fﬂ» (10)

2¢; + €2 — fea —€1)

where ¢; is the dielectric constant of the background and
€2 is the dielectric constant of the spherical scattering
centers. In Fig. 4, the Maxwell-Garnett theory (MG-1,
white circles) denotes the case where ¢;=1, €3=13, and
f is the concentration of the e¢; material. Just for com-
parison, we also present in Fig. 4 the Maxwell-Garnett
theory (MG-2, crosses) of e2=1 and €;=13 with f now
the concentration of the ¢; material. Ounly for high values
of f does the MG-2 theory agree with the fcc numerical
results. In Fig. 4 we also present the results of the scalar
theory, where €. = fea+ (1 — f)er, with €;=1 and €2=13,
which is much higher than the numerical results and all
the other theories. In order to reinforce the point that
the coated CPA is a substantial improvement over the
weak scattering limit or previous CPA’s,3*1? where the
geometry was not treated properly, we have also plotted
in Fig. 4 results for e, within the weak scattering limit
(x), and within the conventional CPA (star). The long-
wavelength limit for the effective dielectric constant in
the weak scattering limit is given by

E==:€14_3f<f2;:EL),

11
62+261 . ( )

where €;=1 and €3=13 and f is the concentration of the
€2 material. As for the conventional CPA (or the effec-
tive medium theory), €. is given by solving the following
equation:

3(1—f) 3f
: =1 12
P +2+§f (12)

The agreement of the coated CPA with the fcc numerical
results is clearly seen in Fig. 4 and this agreement is also
consistent with a value of z = 1.65. Finally, we want to
point out that all the theories agree between themselves
as well as with the numerical results for low values of
filling ratio f. This is expected, since the weak scattering
limit theory and its CPA extensions coincide in the limit
f —0 as can be seen by comparing Eq. (10) with Eq. (11).

As another check of the coated CPA, we present results
for the experimental situation studied by the Amster-
dam group.® Their experiments® involved the multiple
scattering of light of wavelength A=633 nm from TiO,
particles with average radius R = 110 nm, an index of
refraction /€,=2.73 and a volume fraction of 36%. An
accurate comparison® between time-resolved and steady-
state measurements concluded that the transport mean
free path was £,=0.5720.05 pm so kf; ~5.6 and the diffu-
sion speed of light, vg = (51)10" ms™* = (0.17£0.03)c.

This is indeed a very small value for the effective ve-
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locity for the propagation of EM waves in random di-
electric spheres. Their measured diffusion constant is
D = vgl;/3=11.7 m?s~!. In Fig. 5(a), we present the
results for the phase velocity [given by Eq. (9b)], the
energy transport velocity, vg, is given by Egs. (28) and
(29) of Ref. 8, and the coated CPA results for the effec-

_ tive phase velocity, vcpa, and the CPA energy velocity

vly. The CPA phase velocity is defined as w/k [see Eq.
(3)]. The CPA energy velocity, vf, is obtained by ex-
tending the Amsterdam group® approach for calculating
vg the following way. We are using the coated CPA to
calculate a frequency-dependent effective dielectric func-
tion for each f. We then use the energy velocity expres-
sion of Lagendijk et al.® to calculate vy with the outside
medium having our CPA effective dielectric function e,
(which is frequency dependent) instead of €55 = 1 as in
the vg calculation. This approach for low f gives a v,
which completely agrees with Lagendijk’s formula (see
Fig. 11) since €, is very close to unity for this case. As f
increases €¢ gets larger than one and in addition develops

1.5 |

v/c

IR

Calx

FIG. 5. (a) The phase velocity, vpn, the energy trans-
port velocity, vg, the coated CPA effective phase velocity,
vepa, and the CPA energy-transport velocity, v, vs d/); for

€:=2.73 dielectric spheres with filling ratio f=36%. d is the
diameter of the sphere and A; = 21rc/w\/e—,~ is the wavelength
inside the sphere. (b) The mean free path versus d/A;. The
black circles give the results for £ within the coated CPA, while
the white circles give the results within the low concentration
limit theory.
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some frequency dependence. For f = 0.60, v’y calculated

this way shows very little structure in agreement with
experiment and our coated CPA velocity. We feel that
this is a reasonable method to treat the difficult regime
of transport properties in the high concentration limit
as a function of d/);, for the experimental situation de-
scribed above. d is the diameter of the dielectric sphere
and A; = 2mc/w+/€, is the wavelength inside the sphere.
We choose to present our results this way, since strong
Mie resonances appear in the total scattering cross sec-
tion from the isolated sphere and in the limit €3/e; — oo,
when d/)\; = (n + 1)/2, with n = 1,2,3... for the vec-
tor case and n = 0,1,2, 3, ... for the scalar case. Notice
that both the phase velocity and the energy transport
velocity give a lot of structure, especially close to the
Mie resonances. This is expected because both of these
quantities were calculated® within a theory valid for the
low concentration limit, i.e., for just one isolated dielec-
tric scatterer. It is expected that the omitted multiple
scattering would smoothen out the strong fluctuations
shown in Fig. 5(a).® The phase velocity calculated by
the formulas given in Egs. (6) and (9a), give unphysi-
cal values, i.e., vpp > c especially close to the isolated
Mie resonances. The energy-transport velocity vg differs
considerably from the phase velocity and is always lower
than vpp, but has a lot of spurious structure due to its cal-
culation procedures which are based on scattering from
a single isolated scatterer. The coated CPA, which is a
self-consistent approximation, gives results which do not
show large fluctuations in either phase velocity (vcpa) or
in the energy velocity (v;) as a function of d/);. As seen
in Fig. 5(a), the values of the CPA velocities are clearly
lower than vy, with the v/ being lower and closer to vg.
In Fig. 5(b), we present the results of the mean free path
£ normalized to the radius R of the dielectric spheres vs
d/); for the low concentration limit {see Eq. (8)] and for
the coated CPA. Notice that the CPA mean free path
does not have any strong structure for this case of 36%
filling ratio, in contrast to the case of the low concen-
tration based £. For low values of d/};, i.e., low values
of w both mean free paths behave as 1/w*, as expected
from Rayleigh scattering. To compare our results with
experiments® note that for d/\; ~ 0.95 we have from
Fig. 5(a) that vg =~ 0.14c and vy =~ 0.39c while the
Amsterdam group’s deduction for vg is (0.17 £0.03)c.
The scattering mean free path £ according to our CPA is
£ ~ 3R to be compared with a transport mean free path,
£, estimated experimentally® to be (5.2 £0.5)R. Our
theoretical value for the formula D = 3vjf equals 12.9
m?s™1 in rather good agreement with the experimental
value of 11.7 m? s 1,

To further check the coated CPA we compare it with
recent experiments of Genack and his collaborators.!” In
their first experiment, they have measured the frequency
dependence of microwave propagation in a sample of 1/2-
in. polystyrene spheres with index of refraction 1.59 and
filling ratio of 56%. Their experimental results are pre-
sented in Fig. 6, where the frequency dependence of the
diffusion constant, transport velocity, and mean free path
are shown. The relation between the experimental fre-
quency v and d/A; is, in this case, v(GHz)~ 15(d/)\;).
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Since the experiments were done in the frequency range
of 18-24 GHz, this means d/A; is in the range from 1.2
to 1.8, which is around the second Mie resonance of the
isolate sphere with index of refraction equal to 1.59 and
radius R = 0.64 cm. In Fig. 7(a), we present the theoret-
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FIG. 6. The frequency dependence of the diffusion con-
stant, transport velocity, and mean free path for a sample of
1/2-in. polystyrene spheres with index of refraction 1.59 and
filling ratio of 59% [experiments by Genack et al. Ref. 17)].
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ical results for the vpp, vE, vy, and vepa vs d/A;, while
in Fig. 7(b), we present the results for the mean free
path calculated within the coated CPA (solid spheres)
and within the weak scattering limit. Notice in Fig. 7(a)
that again vg has relatively large structures close to the
isolated Mie resonances, but not as strong as in the pre-
vious case of Fig. 5(a), since in this case the index of re-
fraction for polystyrene is much lower. By comparing the
experimental results for the transport velocity (Fig. 6)
with the theoretical results (Fig. 7), one can clearly see
that in this case the coated CPA, v}, gives results in
rather good agreement with experiments. For the entire
frequency range of 18-24 GHz (or equivalently d/A\;=1.2—
1.8), the experimental transport velocity does not have
any strong structure and is roughly equal to (0.6-0.8)c
in agreement with the coated CPA v, which is about
0.65c. However, v is flatter than the experimental one.
As far as the comparison of the experimental mean free
path Fig. 6 and the coated CPA path [Fig. 7(b)], there is
indeed a semiquantitative agreement for v >19 GHz (or
d/A; >1.27) but the experimental drop in low frequen-
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FIG. 7. (a) The phase velocity, vpn, the energy-transport
velocity, vg, the coated CPA effective phase velocity, vcpa,
and the CPA energy transport velocity, v, vs d/A; for the
polystyrene spheres of Fig. 6. (b) The mean free path vs
d/A:. The black circles give the results for £ within the coated
CPA while the white circles give the results within the low
concentration limit theory.
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cies is very difficult to understand theoretically. A close
examination of the experimental data for the mean free
path shows that £ = 4R for d/\;=1.7 (or v = 26GHz)
and monotonically increases to £ ~ 11R at d/\;=1.27
(or v=19 GHz). The corresponding theoretical results
are £ ~ 2.5R and £ ~ 5R for the two frequencies, i.e., a
factor of 2 lower than the experiment. We believe this
discrepancy is due to the fact that the filling ratio is high
(f =~0.56), almost close packing and in this case we have
strong short-range order. This order is responsible for
the high values of £ in the experiment. While the coated
CPA takes some of the short range into account, still

it is an effective medium theory and does not have the

capability of predicting that at filling ratios f close to.
the close packing £ might indeed become very large. To
simulate this behavior, we multiplied the imaginary part
of the self-energy by the factor [1 — (f/0.64)] as we it-
erate the self-consistent equation [Eq. (4)] to derive the
effective dielectric constant. This extra factor, by con-.
struction, gives that £ will go to infinity, i.e., we have
extended states as we approach the random close pack-
ing of f ~ 64%. The results presented in Fig. 7(b) for
£ within the coated CPA were calculated with this extra

factor in. As we discussed before, there is indeed a quan-

titative discrepancy between theory and experiment, but
the trend is similar.

In their second experiment,'? Genack et al. measured
the frequency dependence of microwave propagation in
a sample of a mixture of nearly spherical, 3/8-in. solid
alumina and hollow polypropylene spheres of the same-
diameter. The index of refraction of the solid alumina
spheres is 3.0. By varying the volume fraction f of alu-
mina spheres, it is possible to find the optimum values
of f and frequency at which the strongest scattering oc-
turs.” Their experimental results are presented in Fig. 8,
where the frequency dependence of the diffusion coeffi-
cient for various filling fractions f of alumina spheres

is shown. The relation between the experimental fre-
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FIG. 8. The frequency dependence of the diffusion coeffi-
cient for mixtures of nearly spherical 3/8-in. solid alumina
with index of refraction equal to 3.0 and hollow polypropy-
lene spheres of the same diameter for different values of filling
ratios [experiments by Genack et al. (Ref. 17)].
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quency v and d/X; is, in this case, v(GHz) = 10(d/\;).
Since the experiments were done in the frequency range
of 18-24 GHz, this means that d/); ranges from 1.8 to
2.6, which spans the region around the second and the
third Mie resonances. Notice that the diffusion constant
D has a strong frequency dependence for both f = 0.15
and f = 0.30. The maximum of D are very close to the
Mie resonances of the isolated sphere, which are at 20
and 25 GHz. However, for f = 0.60, D is nearly inde-
pendent of frequency, indicating the breakdown of the
low concentration limit, which assumes that the dielec-
tric scatterers are independent. In Fig. 9, we present the
coated CPA results for the diffusion coefficient D. D was
calculated using the formula D = v;£/3, where both v’
and £ were calculated within the coated CPA theory. No-
tice that indeed the coated CPA results give results for
D that agree only qualitatively with experiment. There
is strong structure in D for f = 0.15, as expected from
an independent scatterer model which is applicable for
low f. As f increases, f = 0.30, there is also structure in
D but by f = 0.60, there is almost no frequency depen-
dence in D, for the experimental frequency range which
spans from d/A;=1.8 to 2.6.

In Fig. 10, we present the frequency dependence of
the phase velocity, vcpa, for various filling ratios f of
alumina spheres calculated within the coated CPA. No-
tice there is strong structure in the vgpa for f = 0.15
and values higher than ¢, while the CPA velocities for
f = 0.30 and, in particular, for f = 0.60 show little or
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FIG. 9. The frequency dependence of the calculated,
within the coated CPA, diffusion coefficients D = fv%{ for
the alumina spheres described in Fig. 8.
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FIG. 10. The phase effective velocity, vcpa calculated
within the coated CPA vs d/); for alumina spheres with in-
dex of refraction 3.0 for different values of filling ratios [ex-
periments by Genack et al. (Ref. 17)].

no structure, as d/A; varies and vepa stays below ¢. We
also present in Fig. 11, the frequency dependence of the
energy-transport velocity, vg,® for the three different fill-
ing ratios. Notice that the energy-transport velocity is
always less than ¢, even for the case of f = 0.15 in con-
trast to the vgpa result. In addition, there is very strong
structure in vg for all the filling ratios, and sometimes
the value of vgp can be as low as 0.05¢. We want to point
out again that the structure seen in the energy-transport
velocity even for f = 0.60 is due to the independent scat-
tering limit that was used in calculating vg. Clearly the
coated CPA does not have any of these limitations, espe-
cially for f = 0.60. For comparison we present in Fig. 12
results for our CPA extension of the energy-transport ve-
locity, vlz. We see that for low concentration (f = 0.15),
v} almost coincides with vg as expected. But for higher
concentration, v}, while always remaining less than c is
much smoother than vy with values lower than vepa but
on the average higher than vg. It would be interesting
to have additional careful measurements of the frequency
dependence of the transport velocity for the 60% case of
alumina spheres to see if there is any structure in the
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FIG. 11. The energy-transport velocity (in the low concen-
tration limit approximation), vg, vs d/A; for alumina spheres
with index of refraction 3.0 for different values of filling ratios.
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1.0

oy,

FIG. 12. The energy-transport velocity, vy (with the out-
side medium having the CPA effective dielectric constant
which is frequency dependent and not equal to one) vs d/A;
for alumina spheres with index of refraction 3.0 for different
values of filling ratios.

transport velocity.

As a final check of our coated CPA, we calculated the
mobility edge trajectory for the scalar as well as the vec-
tor EM wave equation in 3D. In Fig. 13, we present the
results for the vector case, where the threshold value of
the dielectric constant ratio u is shown as a function of
f. Comparing Figs. 1{(b) and 13, notice there is quali-
tative agreement between the positions of the band gaps
[Fig. 1(b)] and the location of the mobility edge trajec-
tory (Fig. 13). Probably the threshold value of ez/¢; is
overestimated by the coated CPA at least for high f, in
spite of the fact that for relatively low e3/¢; the value of £
is underestimated. We think the reason for this possible
overestimation at large f is that the strong order induced
in the system as the close-packing limit is approached is
not properly incorporated in our CPA. As a result, the
strong reduction in the density of states {which favors
localization) is missing. On the other hand, the sim-
ple CPA, in spite of its complete omission of the short-
range order, overestimates the randomness so strongly
that may produce threshold values of €a2/€; close to re-
ality for 0.5< f <0.7. In conclusion, on the basis of
the above arguments, we expect that the coated CPA is
closer to reality for f <0.3, while the simple CPA may
be more realistic for 0.5< f <0.7.

IV. CONCLUSIONS

In this paper we have presented an extension of the
well-known CPA, where the basic scattering units are
a coated sphere and a host materjal sphere embedded
in an effective dielectric medium. This newly developed
coated CPA takes into account some of the short-range
order present in the random system under consideration,
which is a random arrangement of dielectric spheres in a
host background. Within our CPA, we have developed
an extension of the Amsterdam group approach for cal-
culating the energy-transport velocity. The validity of

our approach is favorably tested by its agreement with
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_ FIG. 13. The threshold value for the ratio ez/e; for the
appearance of localized states vs the filling ratio f for the
EM case. The dotted line gives the coated CPA results, while
the solid line gives the simple CPA results.

experimental results as well as with numerical calcula-
tions of the long-wavelength dielectric constant and the
mobility edge trajectory. The results obtained, especially
in the frequency regime where the wavelength is compa-
rable to the size of the dielectric scattering units, show
very interesting new behavior. The coated CPA is defi-
nitely an improvement over previous CPA’s, but we want
also to point out that it is also based on performing the
average over only two scattering units. Therefore, its ap-
plicability in finding the mobility edge trajectories must
be treated with caution. Possible improvements of our
CPA may include a better choice of the R, and R, radii
vs f and possibly some vertex corrections to the effec-
tive transport velocity v} and mean free path £;. The
PWA used together with coated CPA in predicting the
localization properties has been thoroughly tested only
for electronic waves and its extension for classical, and
especially EM, waves is a topic for further investigation.

ACKNOWLEDGMENTS

We want to thank A. Z. Genack and J. H. Li for very
useful discussions about their experimental investigations
prior to publication. Ames Laboratory is operated for
the U.S. Department of Energy by Iowa State Univer-
sity under Contract No. W-7405-ENG-82. This work
was supported by the Director of Energy Research, Office
of Basic Energy Sciences, NATO Grant No. RG769/87,
NSF Grant No. INT-9117356, and CEC Grant No. SCC*
CT90-0020.



3810 C. M. SOUKOULIS, S. DATTA, AND E. N. ECONOMOU 49

! For a review see Scattering and Localization of Classical
Waves in Random Media, edited by Ping Sheng (World
Scientific, Singapore, 1990); Photonic Band Gaps and Lo-
calization, edited by C. M. Soukoulis (Plenum, New York,
1993). See also Philip St. J. Russel, Phys. World 37, 37
(1992); S. John, Phys. Today 40, 32 (1991).

?8. John, Phys. Rev. Lett. 53, 2169 (1983); Phys. Rev. B
32, 304 (1985); Comments Condens. Matter Phys. 14, 193
(1988). - :

3. M. Soukoulis, E. N. Economou, G. S. Grest,
and M. H. Cohen, Phys. Rev. Lett. 62, 575 (1989);
E. N. Economou and C. M. Soukoulis, Phys. Rev. B 40,
7977 (1989).

* Ping Sheng and Z. Q. Zhang, Phys. Rev. Lett. 57, 1879
(1986).

5 K. Arya, Z. B. Su, and J. L. Birman, Phys. Rev. Lett. 57,
2725 (1986).

8 C. A. Condat and T. R. Kirkpatrick, Phys. Rev. Lett. 58,
226 (1987); Phys. Rev. B 32, 495 (1985); T. R. Kirkpatrick,
ibid. 31, 5746 (1985).

7J. M. Drake and A. Z. Genack, Phys. Rev. Lett. 63, 259
(1989); N. Garcia and A. Z. Genack, ibid. 66, 1850 (1991);
66, 2064 (1991).

8 M. P. Albada, B. A. van Tiggelen, A. Lagendijk, and
A. Tip, Phys. Rev. Lett. 66, 3132 (1991); Phys. Rev. B

45, 12233 (1992).

® Y. N. Barabanenkor and V. D. Ozrin, Phys. Rev. Lett. 69,
1364 (1992).

10 J. Kroha, C. M. Soukoulis, and P. Wilffe, Phys. Rev. B
47, 11093 (1993).

11 E. N. Economou and A. D. Zdetsis, Phys. Rev. B 40, 1334
(1989).

12E. N. Economou, C. M. Soukoulis, and A. D. Zdetsis,
Phys. Rev. B 30, 1686 (1984); see also E. N. Economou
and C. M. Soukoulis (Ref. 1), p. 404.

'35, Datta, C. T. Chan, K. M. Ho, and C. M. Soukoulis,
Phys. Rev. B 46, 10650 (1992).

1 E. N. Economou and M. Sigalas, in Photonic Band Gaps
and Localization, edited by C. M. Soukoulis (Plenum, New
York, 1993), p. 317.

15 C. F. Bohren and D. R. Huffman, Absorption end Scatter-
ing of Light by Small Particles (Wiley-Interscience, New
York, 1983), p. 82 (single sphere), p. 181 (coated sphere),
and p. 475 (computer programs).

16 3. Datta, C. T. Chan, K. M. Ho, and C. M. Soukoulis,
Phys. Rev. B 48, 14936 (1993).

™ A. 7. Genack, J. H. Li, N. Garcia, and A. A. Lisyan-
sky, in Photonic Band Gaps and Localization, edited by
C. M. Soukoulis (Plenum, New York, 1993), p. 23.



